Posts

Showing posts from September, 2013

Smart Renewable Energy Microgrid

Image
Smart Renewable Energy Microgrid A small team of enthusiastic and adventurous engineers at FluxGen Engineering technologies has come up with a solution to electrify houses in remote rural areas  that are not directly connected to the electricity board power grid. Read on to know more. Microgrid is basically a small-scale power supply network that is designed to provide power for a small community. It can-not be used for high-power consuming devices but can be used as an alternative approach to integrate small-scale distributed energy resources into low-voltage electricity systems. Enabling local power generation, it comprises various small power generating sources that make it highly fexible and efficient. Basically, the solution aims to electrify houses that are not directly connected to the electricity board power grid due to their remoteness. To be precise, “We have integrated existing hardware components in the market with a powerful embedded system. The setup forms an electricity

World's thinnest substance graphene 'will power the next generation of computers'

Image
World's thinnest substance graphene 'will power the next generation of computers'   Today, most information is transmitted by light – for example in optical fibrers. Computer chips, however, work electronically. Somewhere between the optical data highway and the electronic chips, photons have to be converted into electrons using light-detectors. Scientists at the Vienna University of Technology have now managed to combine a graphene photodetector with a standard silicon chip. It can transform light of all important frequencies used in telecommunications into electrical signals. The scientific results have now been published in the journal “Nature Photonics.” Computing power made of carbon? Both academia and the industry have high hopes for graphene. The material, which consists of a single layer of hexagonally arranged carbon atoms, has extraordinary properties. Two years ago, the team around Thomas Müller (Institute of Photonics, Vienna University of Technol

Industrial Processes Call for Customized Approaches to Wastewater

Image
Industrial Processes Call for Customized Approaches to Wastewater. Water is a mission-critical resource for industrial firms, and wastewater treatment makes up an important component of many company’s water-management strategy. Increasing water scarcity and stress, along with ever-stricter government regulation, compel industrial firms to seek out ever-more-efficient systems for treating their wastewater. How do manufacturing and industrial firms treat their wastewater? Although we’re discussing industrial wastewater treatment here, the best place to start is describing conventional treatment processes. Nearly any industrial plant will need to process sewage — graywater and human waste — either through an in-house plant or by feeding it to a municipal facility. For any enterprise large enough to need its own wastewater facilities, the default system would be more or less based on the three stages of primary, secondary, and tertiary treatment. However, a manufacturing or industrial plan

Modular Battery Concept for Short-Distance Traffic

Image
Modular Battery Concept for Short-Distance Traffic. Electric mobility may be economically efficient today. Battery-based electric drives can be applied efficiently in urban buses, for instance. Frequent acceleration and slow-down processes as well as a high utilization rate in short-distance traffic make their use profitable even when considering current battery costs. At the IAA International Motor Show in Frankfurt, Karlsruhe Institute of Technology (KIT) will present an e-city bus demonstrator to illustrate the concept. The key modules of the demonstrator are a drive train with a high-torque electric motor, a high-voltage network, a battery management system, and a novel modular battery system with lithium-ion cells made in Germany. At the IAA, the demonstrator developed for drive tests will present options for the design of the electric drive train of buses. Using the demonstrator, the innovation potential of KIT's research results can be validated and interaction of the compon